

Mars Sample Return Conceptual Mission Overview

Brian K. Muirhead*, Ashly Karp*, Ludovic Duvet†, Friederike Beyer†

*Jet Propulsion Laboratory, California Institute of Technology

† European Space Agency

© 2018 all rights reserved.

Agenda

- Mars Sample Return Campaign Discussion
 - Functional Objectives
 - MSR Architectural Elements
 - MSR Mission Scenario and Roles
 - Current Operations Timeline
 - Backward Planetary Protection
 - Key Trades and Systems Engineering
- MSR Element Concepts
 - Lander Concepts Under Study
 - Orbiting Sample Container Concept and Sample Transfer Arm
 - Mars Ascent Vehicle Concept
 - Sample Fetch Rover Concept
- Summary

Mars Sample Return Campaign Discussion

MSR Campaign – Functional Objectives

- Acquire and return to Earth a scientifically selected set of Mars samples for investigation in terrestrial laboratories
- Select samples based on their geologic diversity, astrobiological relevance, and geochronologic significance
- Establish the field context for each sample using in situ observations
- Ensure the scientific integrity of the returned samples through contamination control (including round-trip Earth contamination and sample-to-sample cross-contamination) and control of environments experienced by the samples after acquisition
- Ensure compliance with planetary protection requirements associated with the return of Mars samples to Earth's biosphere
- Achieve a set of sample-related scientific objectives
 - Life Geologic environments Geochronology Volatiles
 - Planetary-scale geology
 Environmental hazards
 ISRU

Fractionation Extraction Powder

MSR Campaign Architecture Elements

Sample Caching Rover (Mars 2020)

Sample acquisition and caching

Sample Retrieval Lander

- Fetch Rover
- Orbiting Sample container (OS)
- Mars Ascent Vehicle

Earth Return Orbiter

- Capture/Containment Module
- Earth Return Module

Mars Returned Sample Handling

- Sample Receiving Facility
- Curation
- Sample science investigations

Flight Elements

Ground Element

MSR Mission Scenario and Roles*

Notional "Fast" MSR Timeline

Fast timeline could return samples to Earth ~3 years after SRL launch

Backward Planetary Protection

- **Objective:** to prevent uncontained or unsterilized material from Mars from being released into Earth's environment, "Break-the-Chain"
- This involves a strategy for the use of analysis, design, and testing of the elements and systems that would be implemented and validated/certified to deliver Mars surface sample tubes to Earth; while containing, immobilizing and/or sterilizing any other Mars material that might reach the biosphere of Earth.
- The key elements for BTC
 - Establishing requirements definition approach
 - National Environmental Policy Act (NEPA) process
 - Use of fault trees for element design
 - Use of various modeling tools to analyze performance and failure modes
 - Use of Quantification of Margins and Uncertainties for understanding the accuracy of our models
 - Use of Probabilistic Risk Assessment to support design studies, end-to-end reliability analysis
 - Model validation testing

Key Trade Studies and Figures of Merit

- Mission success
- Complexity
- Cost
- Development and operational risk
- Performance
- Implementation

Architectural Drivers

- OS design (including number of tubes and shape)
- Approach to Break the Chain
- MAV propulsion technology
- SRL entry, descent and landing approach and any need augmentations
- ERO propulsion approach and related performance

U3

SRL

MSR Element Concepts

Lander Concept Options Under Study (1/2)

- Mission Objectives:
- Land on Mars
- Deploy the Sample Fetch Rover
- Maintain the lander and MAV within safe operating conditions
- Once the SFR returns with the tubes, SRL must:
 - Transfer tubes to the OS in the MPA, using the STA
 - Assemble the MPA to the MAV
 - Prepare the MAV for launch (heat and erect)
 - Launch the MAV
- Most of Entry, Descent and Landing (EDL) is common to both options and based on Mars Science Laboratory
 - Exception: 4.7m spherical heatshield

Lander Concept Options Under Study (2/2)

Key Study Elements

- Accommodation of MAV (400 kg) and Fetch Rover (120 kg) on lander in aeroshell, with volume and mass margins
- Solar power and thermal design for worst case environments
- MAV propulsion technology, performance (including mass), and reliability
- OS: Tube accommodation, insertion into MAV
- Planetary protection design and implementation strategies

Propulsive Platform Lander

Skycrane Delivered Lander

Orbiting Sample (OS) Container Concept

- Hold desired number of samples
 - Tubes are inserted by Sample Transfer Arm on lander
 - OS then must be assembled & launched to orbit by MAV
- Hold samples securely through launch to Earth landing
- Support maintaining samples within environmental constraints
 - Sample temperature < +30 °C
 - Keep magnetic fields < ½ mT at sample
- Accommodate rendezvous and tracking by visual wavelength cameras on orbiter
 - Sufficient albedo to be detected in Mars orbit

Mars Ascent Vehicle (MAV) Concept

Mission Objectives

- Launch from all candidate M2020 landing sites
- Inject OS into >350 km altitude orbit, > 25 deg inclination (< 1deg. dispersion)

Technology Development Status

- Numerous options have been studied in the past
- Currently, two contractors are working to demonstrate performance of a single stage to orbit hybrid propulsion technology concept
 - Including ignition and stable combustion for the mission duration and a single restart
 - Both are achieving ignition with augmented combustion energy sources

Key Trade Studies in Work

- Overall vehicle design to meet Mars mass and volume constraints
- Thrust vector control
- Design for environments

14

MAV – Full Scale Testing Video

Mars Ascent Vehicle Infrared Thermography

Whittinghill Aerospace Mojave Spaceport, California MAV Hybrid Rocket Motor Test #FT-01 February 27, 2018

Camera: FLIR A655sc SN:55001515
Lens: FOL13
Range: 300.0C to 2000.0C
50 Frames per Second

Thermographers: William Till Darrell Gaddy Derek Moody

WHITTINGHILL

Fetch Rover Concept

Mission Objectives

Acquire sample tubes cached by M2020 and deliver them to the SRL

Key Specifications (based on NASA conceptual design)

- Rover Mass: 120 kg (Not to Exceed)
- Egress Mass: 25 kg (Not to Exceed)
- Stowed Volume: ~1 m³

ESA Implementation

- Two parallel competitive contracts: Thales Alenia Space,
 Italy and Airbus Defence and Space, UK
- ExoMars 2020 heritage: triple bogie, six wheel approach
- Technology development: Mars Robotic Exploration Program (MREP) for GNC, miniaturised avionics, as well as low temperature mechanisms and batteries.

Current NASA Fetch Rover Concept

Scale is roughly 2/3 of MER

Summary

- The MSR campaign architecture trade space is well understood, with reference options defined where appropriate and options are being evaluated to achieve robust campaign architecture closure.
- The major technical elements are at an appropriately detailed level of definition for this phase of a pre-project effort.
- Technology development is proceeding per plan.
- The international and NASA cross-agency team is proceeding toward closure of a robust MSR campaign architecture in late 2019.

